三角函数的单调性是三角函数的重要性质,在三角函数的各种问题中都能见到单调性的独特应用之处,特别是在比较大小、求三角函数的单调区间、解不等式等方面有着不可替代的作用,下面我们借助于几个例子来进行分析:
一、典例分析
1. 利用三角函数的单调性比较大小
例1 比较下列各组数的大小
(1)■;
(2) ■
解析: (1) ∵■
∴ ■
而■在(0,1)内递增,
∴■
(2)■
■内单调递增,
∴■
点评:比较两个三角函数值的大小常常先将它们化为同名函数,然后将角化为在该函数的同一单调区间内的角,最后利用函数的单调性来比较函数值的大小。
2. 利用三角函数的单调性求单调区间
例2 求函数■
的单调区间.
解析:原函数变形为
■,
则只需求■的单调区间即可。
■
■上单调递增
即■上单调递增,
■上单调递减
即在■
上单调递减
故■的递减区间为: ■
故原函数递增区间为:
■
点评:研究三角函数的性质时常用整体思想,本题将函数■作整体代换,转化为对函数■的性质的研究。
快报记者 谢静娴 黄艳 组稿